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Context : HPC 

Supercomputers for numerical simulations 

 

 

Massively parallel machines (3 million cores) 

 

 

At CEA, Tera 100 : 

6e from TOP 500 in 2010 

140 000 cores, 1.05 Pflops. 

 

 

Growing parallelism inside nodes : 

Tera 100, large nodes :128 cores (16 processors) 

Now : Intel Xeon Phi, 60 cores (1 processor) 

 

 

Memory becomes a critical resource : 

Growing impact on performance (data movements / management) 

Decreasing memory per core 
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Architecture 

Computer science : operations & datas 

 

Multiple memory levels 

 

Hierarchical caches 

 

Remote / local memories (NUMA) 

Processor : 8 cores 

Thin nodes : 

32 cores 

Large nodes : 128 cores (BCS) 
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User space allocator : malloc 

 

Impact of memory management mechanisms ? 

 

Focus on : 

Impact on allocation time : 

Impact on access efficiency (placement) 

Memory consumption 

 

Involving two components : 

Operating System (OS) 

User space memory allocator (malloc) 

 

Malloc C interface : 

 

17 JUILLET 2014 

Hardware 

OS 

mmap munmap mremap 

Glibc 

malloc … 

LD_PRELOAD=liballoc.so 

malloc … 

Application 

float * ptr = malloc(SIZE); 
… 
ptr = realloc(ptr,NEW_SIZE); 
… 
free(ptr); 
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OS virtual / physical address spaces 

Two address spaces : physical + virtual 

 

Description of the memory mapping in blocks of 4 KB (pages) 

 

Segments creation with syscalls : mmap / munmap / mremap 

 

Malloc has the responsibility to hide the pages to developers 

MMU / OS 

Physical memory (RAM) 

Virtual memory 
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Lazy page allocation 

mmap creates pure virtual segments 

 

First touch creates a page fault for each virtual page 

 

OS provides physical pages on first touch 

 

First touch implicitly determines NUMA placement of the page 

 

ptr = mmap(…,SIZE,…); 

#pragma omp parallel for 

for (i = 0 ; i < SIZE ; i++) 

 ptr[i] = 0; 

T1 

MMU / OS 

RAM NUMA 1 RAM NUMA 2 

T2 
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Huge pages 

x86_64 processors also support 2 MB or 1 GB pages (Huge pages) 

 

Address more with less pages 

 

TLB (Translation Lookaside Buffer) cache inside the processor MMU 

 

Support Linux  : Transparent Huge Pages (THP) 

MMU / TLB / OS 

Virtual memory 

Physical memory 
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Cache associativity 

 

Data can only be placed in one of the N lines associated to the address 

 

Can create conflicts depending on the OS 

 

Linux randomly chooses the pages 

 

Physical memory 

MMU / OS 

Virtual memory 

Cache 

? 
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Existing solutions 

Huge pages 
 

Larger than cache ways 

 

Native support on FreeBSD 

 

Extended support on Linux / OpenSolaris 

 

 

 

Page coloring 
 

4K pages by taking care of associativity 

 

Available on OpenSolaris 

 

Color based on virtual address  (modulo) 

 

Regular coloring : coloration with repeated patterns 

 

MMU / OS 

MMU / OS 
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OS strategies comparison 

Each system has its default paging strategy: 

 

 

 

 

 

 

 

 

Is Linux slower due to random paging ? 

 

 

Tested architecture : Nehalem bi-socket 

 

 

Use a fixed compile chain : GCC/Binutils/MPI/BLAS 

 

 

Focus a pathological case 

 

OS Strategy 

Linux 4K random 

OpenSolaris Page coloring 

FreeBSD Huge pages 
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EulerMHD issue 

EulerMHD : 

C++ /MPI 

Magnéto-hydrodynamic stencil code 

 

FreeBSD : slowdown of 1.5x, up to 3x in parallel 

 

Impacted function only do compute. 

 

Function with 9 arrays pre-allocated at init. : 

 

 

 

 

Change between OS’s :  

User space memory allocator (malloc). 

OS paging policy 

(Scheduler) 

 

Effect can be controlled by changing the allocator. 

for (i = 0 ; i < SIZE ; i++)  

 x1[i] = x2[i] + x3[i] … + x9[i] 

PhD. defense | 17 july 2014 |  Slide 14 / 43 



Alignment effect on regular coloring 

Each malloc (OS) produces different alignments 

 

FreeBSD align large segments on 2 MB 

 

It interferes with regular patterns generated by :  

OpenSolaris coloration method (modulo) 

Huge pages 

 

Physical memory 

MMU / OS 

Virtual memory 

Cache 

? 

a = X * 2MB b = Y * 2MB c = Z * 2MB 
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Solution 

Avoid segment alignments on cache way size (mmap / malloc). 

 

The Linux random approach prevents pathological cases 

 

Do not use regular patterns for page coloring (eg. single modulo) 

 

Huge pages are regular by hardware definition 

 

 

 

Physical memory 

MMU / OS 

Virtual memory 

Cache 

a = X * 2MB b = Y * 2MB c = Z * 2MB + 8 KB 
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Allocator performance on HPC applications 

Main interest : malloc time cost 

 

 

Test case : Hera 

Adaptive Mesh Refinement (AMR) 

Massive C++/MPI code (~1 million lines). 

 

 

Large number of memory allocations 

(~75 millions / 5 minutes on 12 cores) 

 

 

Large number of alloc/realloc around ~20 MB 

 

 

Available allocators : 

Doug Lea / PTMalloc : libc Linux 

Jemalloc : FreeBSD / Firefox / Facebook 

TCMalloc : Google 
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Hera preliminary results 
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How to measure malloc time 

Measurement method : 

 

 

 

 

 

Ok for small blocks, but not for large one : 

 

 

 

 

 

 

 

Lazy page allocation. 

 

Page faults on first access. 

 

 

T0 = clock_start(); 
ptr = malloc(SIZE); 
T1 = clock_end(); 

T0 = clock_start(); 
ptr = malloc(SIZE); 
for ( i = 0 ; i < SIZE ; i += PAGE_SIZE) 
 ptr[i] = 0; 
T1 = clock_end(); 

For 4GB Malloc First access 

Time (M cycles) 0,008 1 217 
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Large allocations 

 

 

Cost for large allocation : page faults. 

 

 

Commonly neglected, literature mainly discuss small allocations 

 

 

Direct call to mmap/munmap 

 

 

HPC applications (expected to) use large arrays 

 

 

Goals : 

Recycle large arrays 

Avoid fragmentation on large segments 

Take care of NUMA 

Limit locks 
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Global structure 

Memory source : 

Manages requests to the OS 

Exchanges per macro-blocs larger than 2 MB 

Acts as a cache by keeping macro-blocks 

Manages balance performance / consumption 

 

Per thread local heap : 

Lock free 

Manages small chunks 

Split macro-blocs 
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No fragmentation for large segments 

Reuse of large segments can induce fragmentation 

 

Example : 

 

 

 

 

 

Can be avoided by use of mremap 

 

 

MMU / OS 

Physical memory 

Virtual memory 10MB 10MB 

a = malloc(10MB); 
b = malloc(10MB); 
free(a); 
a = malloc(20MB); 

20MB 

Too small to be reused We still have the physical pages. It avoids page faults 
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Malloc NUMA issue 

Exchanges between NUMA nodes : 

 

 

 

 

 

 

 

 

 

Most current allocators are affected by this issue 

 

 

Malloc has no information about the use of allocated segments 

 

 

Implicit binding on first touch 

 

 

User space allocator do not control physical binding of multi-page segments 

 

 

 

 

 

 

 

 

 

 

T1 

Allocator 

On NUMA 1 

T2 On NUMA 2 

1K, NUMA 1 free() 

Malloc() 

|  PAGE 24 / 43 PhD. defense | 17 july 2014 



NUMA strategy 

With standard API, we can only suppose local use 

 

 

Local heap guarantees NUMA isolation 

 

 

No exchanges between NUMA sources 

 

 

MM. sources are selected with hwloc at thread init. 

 

 

Threads are not binded by default, so they move ! 

 

 

Create memory sources with confidence levels : 

A common one for mobile threads 

Per NUMA for binded threads 

Per NUMA for explicit requests (binded with hwloc) 

 

 

 

 

 

 

 

Local heap 
mm. source 

NUMA 1 Local heap 

1 

2 

Local heap 
mm. source 

NUMA 2 Local heap 

3 

4 

Binded threads 

Explicit NUMA requests 

sctk_alloc_on_node() 

Local heap Strict NUMA 1 

Local heap Strict NUMA 2 

Local heap 

Unsafe 

common 

mm. source 

Mobile threads 

Local heap 

5 

6 

Local heap 7 
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Remote free without locks 

 

 

Remote Free : 

Chunk allocated by a thread. 

Freed by another thread. 

 

 

Commonly implies locks on all local heaps 

 

 

We use a dedicated atomic queue (RFQ) 

 

 

RFQ flush on next memory operation 

 

 

Tracking ownership with a lockfree register 
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Allocator Profiles 

 

Test allocator with multiple profiles 

 

 

Lowmem profile 

Return memory to the OS as soon as possible 

 

 

UMA Profile 

Recycle large segments 

Disable NUMA 

Use only one common memory source 

 

 

NUMA profile : 

Recycle large segments 

Enable NUMA structures 
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Hera on bi-Westmere (12 : 2 * 6 cores) 
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Hera on Nehalem-EP (128 : 4*4*8 cores) 
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Benchmarking page faults 

Page faults are an issue for allocation performance 

 

 

We previously limit them with large segment recycling 

 

 

Can we improve fault performance? 

 

 

Micro-benchmark : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ptr = mmap(SIZE); 
#pragma omp parallel for 
for ( i = 0 ; i < SIZE ; i += PAGE_SIZE) 
{ 
 TIME_DISTRIBUTION(ptr[i] = 0); 
} 
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Page fault scalability 

Are page faults scalable ? Over threads or processes. 

 

Mesurement on 4*4 Nehalem-EP (128 cores) and on Xeon Phi (60 cores)  

 

Get scalability issue ! 
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Can huge pages solve this issue ? 

 

Standard pages: 4K 

 

 

Huge pages (x86_64): 2M 

 

 

Divide number of faults by 512 

 

 

Impact on performance ? 

Sequential : only 40% 

Parallel : No 

 

 

Why ? 
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What happens on first touch page fault ? 

 

Hardware generates an interruption to the OS 

 

Take locks on page table 

 

Check reason of the fault 

 

Is first touch from lazy allocation 

 
Request a free page to NUMA free lists 

 
Clear the page content  

 
Map the page, update the page table 

 

Release locks 

 

 

Possible issue on Xeon Phi 

~1400/3400 cycles 40% 

   99% for THP ! 
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How to avoid page zeroing cost ? 

 

Microsoft approach : 

Windows uses a system thread to clear the memory 

So its done out of critical path 

 

But zeroing: 

Implies useless work 

Consumes CPU cycles so energy 

Consumes memory bandwidth 

 

Allocation pattern follow: 

 

 

 

 

 

Why not avoid them ? 

 

double * ptr = malloc(SIZE * sizeof(double)); 
for ( i = 0 ; i < SIZE ; i++) 
 ptr[i] = default_value(i); 
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Reusing local pages to avoid zeroing 

Page zeroing is required for security reason 

 

It prevents information leaks from another processes or from the kernel. 

 

But we can reuse pages locally ! 

 

Need to extend the mmap semantic : 

 

Usable by malloc / realloc. 

 

User-space 

Kernel-space 
Global free list Kernel Code 

Process 0 Process 1 Process 2 

Local pool 

Process 3 

Local pool 

mmap(…MAP_ANON…) mmap(…MAP_ANON|MAP_PAGE_REUSE…) 

Pass. 
Pass. 

Security 

Hole 
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Performance impact 

Get the expected improvement on 4K pages (40% for sequential). 

 

Also improve scalability on 1 socket 

 

On NUMA locking effets become dominant for scalability 

 

Get the constant improvement related to page zeroing. 

PhD. defense | 17 july 2014 |  Slide 37 / 43 



Performance impact on huge pages 

Huge pages (2 MB) faults become 47 times faster, 60 in parallel. 

 

New interest for huge pages. 
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Hera results on bi-westmere (2*6 cores) 

Standard pages (4K): 

 

 

 

 

 
 

 

Transparent Huge Pages (2M): 

Allocator Kernel Total (s) Sys. (s) Mem. (GB) 

Glibc Std. 144 9 3,3 

NUMA profile Std. 135 2 4,3 

Lowmem profile Std. 162 16 2,0 

Lowmem profile Patched 157 11 2,0 

Jemalloc Std. 143 15 1,9 

Jemalloc Patched 140 9 3,2 

Allocator Kernel Total (s) Sys. (s) Mem. (GB) 

Glibc Std. 150 13 4,5 

NUMA profile Std. 138 2 6,2 

Lowmem profile Std. 196 28 3,9 

Lowmem profile Patched 138 3 3,8 

Jemalloc Std. 145 15 2,5 

Jemalloc Patched 138 6 3,2 
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Conclusion 

Paging / alignment policies : 
Avoid large alignments in malloc. 

Need to avoid regular coloring. 

Random paging is more robust ! 

Huge pages are regular by hardware definition. 

Need to co-design malloc and OS paging policies. 

 

 

Malloc : 
Interest of large allocation recycling. 

NUMA support is required on large nodes. 

Speed-up of 2x on Hera 128 cores. 

 

 

Page faults (OS) : 
Observe a scalability issue. 

40% of fault time : zeroing memory ! 

Proposal for a semantic extension. 

New interest for huge pages : 47x ! 

Published articles : 

 

[1] A Decremental Analysis Tool for Fine-Grained  

Bottleneck Detection (Partool 2010) 

Souad Koliaï, Sébastien Valat, Tipp Moseley,  

Jean-Thomas Acquaviva, William Jalby 

 

[2] Introducing Kernel-Level Page Reuse for  

High Performance Computing (MSPC 2013) 

Sébastien Valat, Marc Pérache, William Jalby 
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Future work 

 

Paging / coloring / alignments 
Implement controlled non regular coloring 

Hardware mixing inside huge pages ? 

Linux huge pages: be aware of alignments (allocator / mmap) 

Smaller huge page size ? 

 

 

Page zeroing : 
Cleanup the patch (swap) and discuss with community 

Hardware zeroing done by RAM ? 

 

 

Malloc : 
Using our memory sources and NUMA strategy inside Jemalloc ? 

Mix with TCMalloc method (madvise(DONT_NEED)) ? 

Dynamic control of consumption / performance ratio 
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QUESTIONS ? 
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Ideal view of HPC memory management stack 

Hardware 

Zeroing by RAM Mixing inside huge pages Smaller huge pages (256K ?) 

Huge pages 

Zeroing patch 

Memory sources 

NUMA + recycling Calloc move_pages optim. Dynamic adaptation Free pages with madvise 

Jemalloc 

Select arena with NUMA No 4K / 2M alignements 

Apply MAMA allocator approch 
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BACKUPS 
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Solution 

 

The Linux random approach prevents pathological cases 

 

 

Do not use regular patterns for page coloring (eg. single modulo) 

 

 
Huge pages are regular by hardware definition 

 

 

Malloc must take care of OS paging strategy 

 

 

Malloc must avoid too large alignments 

 

 

Existing similar cases for 4K alignments  

(eg. L1 caches, 4K aliasing) 
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Kernel-space VS. user-space memory pools 

Kernel-space advantages: 
 
Control the physical memory, not virtual one 

 

Follow the real access pattern 

 

NUMA support at page level, not segment 

 

Buffered memory can be reclaimed by kernel. 

 

Limitations: 

 
More efforts to implement. 

 

Do not remove the interruption and locking costs 
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OS strategies comparison 

Each system has its default paging strategy: 

 

 

Is Linux slower due to random paging ? 

 

 

Tested architecture : Nehalem bi-socket 

 

 

Use a fixed compile chain : GCC/Binutils/MPI/BLAS 

 

OS Strategy 

Linux 4K random 

OpenSolaris Page coloring 

FreeBSD Superpages 
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Impact on threads 

Larger effects on shared caches with threads/processes (Nehalem) 

 

EulerMHD : Slowdown up to 3x on FreeBSD 

 

16 ways L3 cache implies a maximum of 4 aligned arrays per core  

 

No limit on concurrent arrays for unaligned allocations 
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4K aliasing 

Consider the simple loop : 

 

 

 

 

If addresses verify : 

 

 

 

It produces false inter-iterations conflicts between :  

store a[ (i-1) ] from i-1 

load b[ (i) - 1 ] from i 

 

Processor thinks (fast check with 12 lower bits) addresses are equals (alias) 

 

 

Processor do not execute them in parallel (out of order) 

 

 

In malloc, direct call to mmap generate 4K alignment by default ! 

a % 4Ko = b % 4Ko 

for (i = 1 ; i < SIZE ; i++) 

 a[i] = b[i-1] 
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Default fallback to mmap 

 

 
Allocators commonly use mmap for large arrays 
 
 
Call to mmap imply alignment on page start (4K) 
 
 
It exposes them to the issue for large arrays !  
 
 
4K aliasing was fixed on Sandy Bridge 
 

 
But 4K alignments also create issue on L1 associativity 
 
 
Allocator must avoid to force large alignments 
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Report a list of similar issue 

Need to take care of large alignments on regular page coloring 

 

Huge pages are regular by hardware definition 

 

Malloc and OS politics interact.  

 

Studies must consider the two. 

 

We reported other similar issues (see the manuscript) :  

4K aliasing, L1 and TLB associativity 
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Small / large allocations 

 

Cost for large allocation : page faults. 

 

 

Commonly neglected, literature mainly discuss small allocations 

 

 

Direct call to mmap/munmap 

 

 

HPC applications (expected to) use large arrays 

 

 

Goals : 

Recycle large arrays 

Avoid fragmentation on large segments 

Take care of NUMA 

Limit locks 
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Parenté des blocs 

A l’appel à free, à quel tas appartient le bloc ? 

 

Ajout d’un registre pour retrouver l’appartenance des blocs 

 

Approche type table des pages. 

 

Pas de verrous contrairement aux arbres. 

Unicité des adresses renvoyées par mmap. 

Un seul macro-bloc peu couvrir une entrée. 

Pas de suppression des niveaux intermédiaires. 
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Mysql results 
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kernel-space VS. user-space memory pools 

Kernel-space advantages: 
 
Control the physical memory, not virtual one 

 

Follow the real access pattern 

 

NUMA support at page level, not segment 

 

Buffered memory can be reclaimed by kernel. 

 

Limitations: 

 
More efforts to implement. 

 

Do not remove the interruption and locking costs 
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Improvement of faults on 6 core westmere 

Times (Kcycles / 4K / Thread) Times (Kcycles / 4K / Thread) 

1 thread 12 threads (hyper-threading) 
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Using two sockets (NUMA) 

One socket (UMA) Two sockets (NUMA) 
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Associativité et coloration de pages 

Les cache sont associatifs 

 

Les données sont placées suivant leur adresse. 

 

Des conflits possibles générés par l’OS 

 

Coloration de page, habituellement, modulo : 

PhD. defense | 17 july 2014 |  Slide 62 / 43 



PhD. defense | 17 july 2014 |  Slide 63 / 43 



PhD. defense | 17 july 2014 

|  PAGE 64 


