
CONTRIBUTION TO THE DEVELOPMENT

OPTIMIZATION METHODS FOR MEMORY

MANAGEMENT IN HIGH−PERFORMANCE

COMPUTING.

PhD. thesis defense

Sébastien Valat

17 july 2014

Thesis work done at :
CEA,DAM,DIF F-91297 Arpajon

PhD. defense | 17 july 2014 | PAGE 1

Plan

I. Introduction

II. Analysis of OS / allocator / caches interactions

III. Allocator for HPC applications

IV. Optimization of Linux page fault handler

V. Conclusion and future work

PhD. defense | 17 july 2014 | Slide 2 / 43

INTRODUCTION

I. Introduction
II. Analysis of OS / allocator / caches interactions
III. Allocator for HPC applications
IV. Optimization of Linux page fault handler
V. Conclusion and future work

PhD. defense | 17 july 2014

| PAGE 3

Context : HPC

Supercomputers for numerical simulations

Massively parallel machines (3 million cores)

At CEA, Tera 100 :

6e from TOP 500 in 2010

140 000 cores, 1.05 Pflops.

Growing parallelism inside nodes :

Tera 100, large nodes :128 cores (16 processors)

Now : Intel Xeon Phi, 60 cores (1 processor)

Memory becomes a critical resource :

Growing impact on performance (data movements / management)

Decreasing memory per core

PhD. defense | 17 july 2014 | Slide 4 / 43

Architecture

Computer science : operations & datas

Multiple memory levels

Hierarchical caches

Remote / local memories (NUMA)

Processor : 8 cores

Thin nodes :

32 cores

Large nodes : 128 cores (BCS)
PhD. defense | 17 july 2014 | Slide 5 / 43

User space allocator : malloc

Impact of memory management mechanisms ?

Focus on :

Impact on allocation time :

Impact on access efficiency (placement)

Memory consumption

Involving two components :

Operating System (OS)

User space memory allocator (malloc)

Malloc C interface :

17 JUILLET 2014

Hardware

OS

mmap munmap mremap

Glibc

malloc …

LD_PRELOAD=liballoc.so

malloc …

Application

float * ptr = malloc(SIZE);
…
ptr = realloc(ptr,NEW_SIZE);
…
free(ptr);

PhD. defense | 17 july 2014 | Slide 6 / 43

OS virtual / physical address spaces

Two address spaces : physical + virtual

Description of the memory mapping in blocks of 4 KB (pages)

Segments creation with syscalls : mmap / munmap / mremap

Malloc has the responsibility to hide the pages to developers

MMU / OS

Physical memory (RAM)

Virtual memory

PhD. defense | 17 july 2014 | Slide 7 / 43

Lazy page allocation

mmap creates pure virtual segments

First touch creates a page fault for each virtual page

OS provides physical pages on first touch

First touch implicitly determines NUMA placement of the page

ptr = mmap(…,SIZE,…);

#pragma omp parallel for

for (i = 0 ; i < SIZE ; i++)

 ptr[i] = 0;

T1

MMU / OS

RAM NUMA 1 RAM NUMA 2

T2

PhD. defense | 17 july 2014 | Slide 8 / 43

Huge pages

x86_64 processors also support 2 MB or 1 GB pages (Huge pages)

Address more with less pages

TLB (Translation Lookaside Buffer) cache inside the processor MMU

Support Linux : Transparent Huge Pages (THP)

MMU / TLB / OS

Virtual memory

Physical memory

PhD. defense | 17 july 2014 | Slide 9 / 43

Cache associativity

Data can only be placed in one of the N lines associated to the address

Can create conflicts depending on the OS

Linux randomly chooses the pages

Physical memory

MMU / OS

Virtual memory

Cache

?

PhD. defense | 17 july 2014
Way 1 Way 2

| Slide 10 / 43

Huge pages

Existing solutions

Huge pages

Larger than cache ways

Native support on FreeBSD

Extended support on Linux / OpenSolaris

Page coloring

4K pages by taking care of associativity

Available on OpenSolaris

Color based on virtual address (modulo)

Regular coloring : coloration with repeated patterns

MMU / OS

MMU / OS

PhD. defense | 17 july 2014 | Slide 11 / 43

ANALYSIS OF OS / ALLOCATOR /

CACHES INTERACTIONS

I. Introduction
II. Analysis of OS / allocator / caches interactions
III. Allocator performances for HPC applications
IV. Optimization of Linux page fault handler
V. Conclusion and future work

PhD. defense | 17 july 2014

| PAGE 12

OS strategies comparison

Each system has its default paging strategy:

Is Linux slower due to random paging ?

Tested architecture : Nehalem bi-socket

Use a fixed compile chain : GCC/Binutils/MPI/BLAS

Focus a pathological case

OS Strategy

Linux 4K random

OpenSolaris Page coloring

FreeBSD Huge pages

PhD. defense | 17 july 2014 | Slide 13 / 43

EulerMHD issue

EulerMHD :

C++ /MPI

Magnéto-hydrodynamic stencil code

FreeBSD : slowdown of 1.5x, up to 3x in parallel

Impacted function only do compute.

Function with 9 arrays pre-allocated at init. :

Change between OS’s :

User space memory allocator (malloc).

OS paging policy

(Scheduler)

Effect can be controlled by changing the allocator.

for (i = 0 ; i < SIZE ; i++)

 x1[i] = x2[i] + x3[i] … + x9[i]

PhD. defense | 17 july 2014 | Slide 14 / 43

Alignment effect on regular coloring

Each malloc (OS) produces different alignments

FreeBSD align large segments on 2 MB

It interferes with regular patterns generated by :

OpenSolaris coloration method (modulo)

Huge pages

Physical memory

MMU / OS

Virtual memory

Cache

?

a = X * 2MB b = Y * 2MB c = Z * 2MB

PhD. defense | 17 july 2014 | Slide 15 / 43

Solution

Avoid segment alignments on cache way size (mmap / malloc).

The Linux random approach prevents pathological cases

Do not use regular patterns for page coloring (eg. single modulo)

Huge pages are regular by hardware definition

Physical memory

MMU / OS

Virtual memory

Cache

a = X * 2MB b = Y * 2MB c = Z * 2MB + 8 KB

PhD. defense | 17 july 2014 | Slide 16 / 43

ALLOCATOR FOR HPC APPLICATIONS

I. Introduction
II. Analysis of OS / allocator / caches interactions
III. Allocator for HPC applications
IV. Optimization of Linux page fault handler
V. Conclusion and future work

PhD. defense | 17 july 2014

| PAGE 17

Allocator performance on HPC applications

Main interest : malloc time cost

Test case : Hera

Adaptive Mesh Refinement (AMR)

Massive C++/MPI code (~1 million lines).

Large number of memory allocations

(~75 millions / 5 minutes on 12 cores)

Large number of alloc/realloc around ~20 MB

Available allocators :

Doug Lea / PTMalloc : libc Linux

Jemalloc : FreeBSD / Firefox / Facebook

TCMalloc : Google

PhD. defense | 17 july 2014 | Slide 18 / 43

Hera preliminary results

0

20

40

60

80

100

120

140

160

Execution time(s)

User System Idle

0

1

2

3

4

5

6

7

8

glibc jemalloc tcmalloc

Physical mem.(Go)

12 cores

0

50

100

150

200

250

300

350

400

450

500

Execution time(s)

User System Idle

0

2

4

6

8

10

12

14

16

glibc jemalloctcmalloc

Physical mem.(Go)

128 cores

PhD. defense | 17 july 2014

+54%

+30%

| Slide 19 / 43

How to measure malloc time

Measurement method :

Ok for small blocks, but not for large one :

Lazy page allocation.

Page faults on first access.

T0 = clock_start();
ptr = malloc(SIZE);
T1 = clock_end();

T0 = clock_start();
ptr = malloc(SIZE);
for (i = 0 ; i < SIZE ; i += PAGE_SIZE)
 ptr[i] = 0;
T1 = clock_end();

For 4GB Malloc First access

Time (M cycles) 0,008 1 217

PhD. defense | 17 july 2014 | Slide 20 / 43

Large allocations

Cost for large allocation : page faults.

Commonly neglected, literature mainly discuss small allocations

Direct call to mmap/munmap

HPC applications (expected to) use large arrays

Goals :

Recycle large arrays

Avoid fragmentation on large segments

Take care of NUMA

Limit locks

PhD. defense | 17 july 2014 | Slide 21 / 43

Global structure

Memory source :

Manages requests to the OS

Exchanges per macro-blocs larger than 2 MB

Acts as a cache by keeping macro-blocks

Manages balance performance / consumption

Per thread local heap :

Lock free

Manages small chunks

Split macro-blocs

PhD. defense | 17 july 2014 | Slide 22 / 43

No fragmentation for large segments

Reuse of large segments can induce fragmentation

Example :

Can be avoided by use of mremap

MMU / OS

Physical memory

Virtual memory 10MB 10MB

a = malloc(10MB);
b = malloc(10MB);
free(a);
a = malloc(20MB);

20MB

Too small to be reused We still have the physical pages. It avoids page faults

PhD. defense | 17 july 2014 | Slide 23 / 43

Malloc NUMA issue

Exchanges between NUMA nodes :

Most current allocators are affected by this issue

Malloc has no information about the use of allocated segments

Implicit binding on first touch

User space allocator do not control physical binding of multi-page segments

T1

Allocator

On NUMA 1

T2 On NUMA 2

1K, NUMA 1 free()

Malloc()

| PAGE 24 / 43 PhD. defense | 17 july 2014

NUMA strategy

With standard API, we can only suppose local use

Local heap guarantees NUMA isolation

No exchanges between NUMA sources

MM. sources are selected with hwloc at thread init.

Threads are not binded by default, so they move !

Create memory sources with confidence levels :

A common one for mobile threads

Per NUMA for binded threads

Per NUMA for explicit requests (binded with hwloc)

Local heap
mm. source

NUMA 1 Local heap

1

2

Local heap
mm. source

NUMA 2 Local heap

3

4

Binded threads

Explicit NUMA requests

sctk_alloc_on_node()

Local heap Strict NUMA 1

Local heap Strict NUMA 2

Local heap

Unsafe

common

mm. source

Mobile threads

Local heap

5

6

Local heap 7

PhD. defense | 17 july 2014 | Slide 25 / 43

Remote free without locks

Remote Free :

Chunk allocated by a thread.

Freed by another thread.

Commonly implies locks on all local heaps

We use a dedicated atomic queue (RFQ)

RFQ flush on next memory operation

Tracking ownership with a lockfree register

PhD. defense | 17 july 2014 | Slide 26 / 43

Allocator Profiles

Test allocator with multiple profiles

Lowmem profile

Return memory to the OS as soon as possible

UMA Profile

Recycle large segments

Disable NUMA

Use only one common memory source

NUMA profile :

Recycle large segments

Enable NUMA structures

PhD. defense | 17 july 2014 | Slide 27 / 43

Hera on bi-Westmere (12 : 2 * 6 cores)

0

20

40

60

80

100

120

140

160

180

Execution time (s)

User System Idle

0

1

2

3

4

5

6

7

8

Physical memory (GB)

PhD. defense | 17 july 2014 | Slide 28 / 43

-5%

Hera on Nehalem-EP (128 : 4*4*8 cores)

0

100

200

300

400

500

600

700

800

Execution time (s)

User System Idle

0

2

4

6

8

10

12

14

16

18

Physical memory (GB)

-20%

-58%

PhD. defense | 17 july 2014 | Slide 29 / 43

OPTIMIZING LINUX PAGE FAULT

HANDLER

I. Introduction
II. Analysis of OS / allocator / caches interactions
III. Allocator for HPC applications
IV. Optimization of Linux page fault handler
V. Conclusion and future work

PhD. defense | 17 july 2014

| PAGE 30

Benchmarking page faults

Page faults are an issue for allocation performance

We previously limit them with large segment recycling

Can we improve fault performance?

Micro-benchmark :

ptr = mmap(SIZE);
#pragma omp parallel for
for (i = 0 ; i < SIZE ; i += PAGE_SIZE)
{
 TIME_DISTRIBUTION(ptr[i] = 0);
}

PhD. defense | 17 july 2014 | Slide 31 / 43

Page fault scalability

Are page faults scalable ? Over threads or processes.

Mesurement on 4*4 Nehalem-EP (128 cores) and on Xeon Phi (60 cores)

Get scalability issue !

PhD. defense | 17 july 2014 | Slide 32 / 43

Can huge pages solve this issue ?

Standard pages: 4K

Huge pages (x86_64): 2M

Divide number of faults by 512

Impact on performance ?

Sequential : only 40%

Parallel : No

Why ?

PhD. defense | 17 july 2014 | Slide 33 / 43

What happens on first touch page fault ?

Hardware generates an interruption to the OS

Take locks on page table

Check reason of the fault

Is first touch from lazy allocation

Request a free page to NUMA free lists

Clear the page content

Map the page, update the page table

Release locks

Possible issue on Xeon Phi

~1400/3400 cycles 40%

 99% for THP !

PhD. defense | 17 july 2014 | Slide 34 / 43

Locks, but hard to fix
(some work from

A.T. Clement ASPLOS12)

How to avoid page zeroing cost ?

Microsoft approach :

Windows uses a system thread to clear the memory

So its done out of critical path

But zeroing:

Implies useless work

Consumes CPU cycles so energy

Consumes memory bandwidth

Allocation pattern follow:

Why not avoid them ?

double * ptr = malloc(SIZE * sizeof(double));
for (i = 0 ; i < SIZE ; i++)
 ptr[i] = default_value(i);

PhD. defense | 17 july 2014 | Slide 35 / 43

Reusing local pages to avoid zeroing

Page zeroing is required for security reason

It prevents information leaks from another processes or from the kernel.

But we can reuse pages locally !

Need to extend the mmap semantic :

Usable by malloc / realloc.

User-space

Kernel-space
Global free list Kernel Code

Process 0 Process 1 Process 2

Local pool

Process 3

Local pool

mmap(…MAP_ANON…) mmap(…MAP_ANON|MAP_PAGE_REUSE…)

Pass.
Pass.

Security

Hole

PhD. defense | 17 july 2014 | Slide 36 / 43

Performance impact

Get the expected improvement on 4K pages (40% for sequential).

Also improve scalability on 1 socket

On NUMA locking effets become dominant for scalability

Get the constant improvement related to page zeroing.

PhD. defense | 17 july 2014 | Slide 37 / 43

Performance impact on huge pages

Huge pages (2 MB) faults become 47 times faster, 60 in parallel.

New interest for huge pages.

PhD. defense | 17 july 2014 | Slide 38 / 43

Hera results on bi-westmere (2*6 cores)

Standard pages (4K):

Transparent Huge Pages (2M):

Allocator Kernel Total (s) Sys. (s) Mem. (GB)

Glibc Std. 144 9 3,3

NUMA profile Std. 135 2 4,3

Lowmem profile Std. 162 16 2,0

Lowmem profile Patched 157 11 2,0

Jemalloc Std. 143 15 1,9

Jemalloc Patched 140 9 3,2

Allocator Kernel Total (s) Sys. (s) Mem. (GB)

Glibc Std. 150 13 4,5

NUMA profile Std. 138 2 6,2

Lowmem profile Std. 196 28 3,9

Lowmem profile Patched 138 3 3,8

Jemalloc Std. 145 15 2,5

Jemalloc Patched 138 6 3,2

PhD. defense | 17 july 2014 | Slide 39 / 43

CONCLUSION AND FUTURE WORK

I. Introduction
II. Analysis of OS / allocator / caches interactions
III. Allocator for HPC applications
IV. Optimization of Linux page fault handler
V. Conclusion and future work

PhD. defense | 17 july 2014

| PAGE 40

Conclusion

Paging / alignment policies :
Avoid large alignments in malloc.

Need to avoid regular coloring.

Random paging is more robust !

Huge pages are regular by hardware definition.

Need to co-design malloc and OS paging policies.

Malloc :
Interest of large allocation recycling.

NUMA support is required on large nodes.

Speed-up of 2x on Hera 128 cores.

Page faults (OS) :
Observe a scalability issue.

40% of fault time : zeroing memory !

Proposal for a semantic extension.

New interest for huge pages : 47x !

Published articles :

[1] A Decremental Analysis Tool for Fine-Grained

Bottleneck Detection (Partool 2010)

Souad Koliaï, Sébastien Valat, Tipp Moseley,

Jean-Thomas Acquaviva, William Jalby

[2] Introducing Kernel-Level Page Reuse for

High Performance Computing (MSPC 2013)

Sébastien Valat, Marc Pérache, William Jalby

PhD. defense | 17 july 2014 | Slide 41 / 43

Future work

Paging / coloring / alignments
Implement controlled non regular coloring

Hardware mixing inside huge pages ?

Linux huge pages: be aware of alignments (allocator / mmap)

Smaller huge page size ?

Page zeroing :
Cleanup the patch (swap) and discuss with community

Hardware zeroing done by RAM ?

Malloc :
Using our memory sources and NUMA strategy inside Jemalloc ?

Mix with TCMalloc method (madvise(DONT_NEED)) ?

Dynamic control of consumption / performance ratio

PhD. defense | 17 july 2014 | Slide 42 / 43

QUESTIONS ?

PhD. defense | 17 july 2014

| PAGE 43

Ideal view of HPC memory management stack

Hardware

Zeroing by RAM Mixing inside huge pages Smaller huge pages (256K ?)

Huge pages

Zeroing patch

Memory sources

NUMA + recycling Calloc move_pages optim. Dynamic adaptation Free pages with madvise

Jemalloc

Select arena with NUMA No 4K / 2M alignements

Apply MAMA allocator approch

PhD. defense | 17 july 2014 | Slide 44 / 43

BACKUPS

PhD. defense | 17 july 2014

| PAGE 45

Solution

The Linux random approach prevents pathological cases

Do not use regular patterns for page coloring (eg. single modulo)

Huge pages are regular by hardware definition

Malloc must take care of OS paging strategy

Malloc must avoid too large alignments

Existing similar cases for 4K alignments

(eg. L1 caches, 4K aliasing)

| Slide 46 / 43 PhD. defense | 17 july 2014

Kernel-space VS. user-space memory pools

Kernel-space advantages:

Control the physical memory, not virtual one

Follow the real access pattern

NUMA support at page level, not segment

Buffered memory can be reclaimed by kernel.

Limitations:

More efforts to implement.

Do not remove the interruption and locking costs

| Slide 47 / 43 PhD. defense | 17 july 2014

OS strategies comparison

Each system has its default paging strategy:

Is Linux slower due to random paging ?

Tested architecture : Nehalem bi-socket

Use a fixed compile chain : GCC/Binutils/MPI/BLAS

OS Strategy

Linux 4K random

OpenSolaris Page coloring

FreeBSD Superpages

PhD. defense | 17 july 2014 | Slide 48 / 43

Impact on threads

Larger effects on shared caches with threads/processes (Nehalem)

EulerMHD : Slowdown up to 3x on FreeBSD

16 ways L3 cache implies a maximum of 4 aligned arrays per core

No limit on concurrent arrays for unaligned allocations

PhD. defense | 17 july 2014 | Slide 49 / 43

4K aliasing

Consider the simple loop :

If addresses verify :

It produces false inter-iterations conflicts between :

store a[(i-1)] from i-1

load b[(i) - 1] from i

Processor thinks (fast check with 12 lower bits) addresses are equals (alias)

Processor do not execute them in parallel (out of order)

In malloc, direct call to mmap generate 4K alignment by default !

a % 4Ko = b % 4Ko

for (i = 1 ; i < SIZE ; i++)

 a[i] = b[i-1]

PhD. defense | 17 july 2014 | Slide 50 / 43

16,8

8,5

4K aligned Unaligned

Cycles / loop

Default fallback to mmap

Allocators commonly use mmap for large arrays

Call to mmap imply alignment on page start (4K)

It exposes them to the issue for large arrays !

4K aliasing was fixed on Sandy Bridge

But 4K alignments also create issue on L1 associativity

Allocator must avoid to force large alignments

PhD. defense | 17 july 2014 | Slide 51 / 43

Report a list of similar issue

Need to take care of large alignments on regular page coloring

Huge pages are regular by hardware definition

Malloc and OS politics interact.

Studies must consider the two.

We reported other similar issues (see the manuscript) :

4K aliasing, L1 and TLB associativity

PhD. defense | 17 july 2014 | Slide 52 / 43

Small / large allocations

Cost for large allocation : page faults.

Commonly neglected, literature mainly discuss small allocations

Direct call to mmap/munmap

HPC applications (expected to) use large arrays

Goals :

Recycle large arrays

Avoid fragmentation on large segments

Take care of NUMA

Limit locks

PhD. defense | 17 july 2014 | Slide 53 / 43

Parenté des blocs

A l’appel à free, à quel tas appartient le bloc ?

Ajout d’un registre pour retrouver l’appartenance des blocs

Approche type table des pages.

Pas de verrous contrairement aux arbres.

Unicité des adresses renvoyées par mmap.

Un seul macro-bloc peu couvrir une entrée.

Pas de suppression des niveaux intermédiaires.

PhD. defense | 17 july 2014 | Slide 54 / 43

Mysql results

PhD. defense | 17 july 2014 | Slide 55 / 43

kernel-space VS. user-space memory pools

Kernel-space advantages:

Control the physical memory, not virtual one

Follow the real access pattern

NUMA support at page level, not segment

Buffered memory can be reclaimed by kernel.

Limitations:

More efforts to implement.

Do not remove the interruption and locking costs

PhD. defense | 17 july 2014 | Slide 56 / 43

Improvement of faults on 6 core westmere

Times (Kcycles / 4K / Thread) Times (Kcycles / 4K / Thread)

1 thread 12 threads (hyper-threading)

PhD. defense | 17 july 2014 | Slide 57 / 43

Using two sockets (NUMA)

One socket (UMA) Two sockets (NUMA)

PhD. defense | 17 july 2014 | Slide 58 / 43

PhD. defense | 17 july 2014 | Slide 59 / 43

PhD. defense | 17 july 2014 | Slide 60 / 43

PhD. defense | 17 july 2014 | Slide 61 / 43

Associativité et coloration de pages

Les cache sont associatifs

Les données sont placées suivant leur adresse.

Des conflits possibles générés par l’OS

Coloration de page, habituellement, modulo :

PhD. defense | 17 july 2014 | Slide 62 / 43

PhD. defense | 17 july 2014 | Slide 63 / 43

PhD. defense | 17 july 2014

| PAGE 64

