DE LA RECHERCHE A L'INDUSTRIE

www.cea.fr

CONTRIBUTION TO THE DEVELOPMENT

OPTIMIZATION METHODS FOR MEMORY

MANAGEMENT IN HIGH-PERFORMANCE
COMPUTING.

Sébastien Valat
17 july 2014

Thesis work done at :
CEA,DAM,DIF F-91297 Arpajon

|. Introduction

II. Analysis of OS / allocator / caches interactions
Ill. Allocator for HPC applications
I\VV. Optimization of Linux page fault handler

V. Conclusion and future work

PhD. defense | 17 july 2014 | Slide 2 /43

Introduction

INTRODUCTION

Context : HPC

Supercomputers for numerical simulations
B Massively parallel machines (3 million cores) |

B AtCEA, Tera 100 :
== 0¢ from TOP 500 in 2010
== 140 000 cores, 1.05 Pflops.

B Growing parallelism inside nodes :
== 1era 100, large nodes :128 cores (16 processors)
== NOW : Intel Xeon Phi, 60 cores (1 processor)

B Memory becomes a critical resource :
== Growing impact on performance (data movements / management)
== Decreasing memory per core

PhD. defense | 17 july 2014 | Slide 4 /43

Architecture

Processor : 8 cores

B Computer science : operations & datas

Main memory

B Multiple memory levels

Socket P#1

| L3 (12MB)

B Hierarchical caches I

| L2 (256KB)

I |
l L2 (256KB) | ‘ L2 (256KB) |

I | |
B Remote /local memories (NUMA) |L“321“’ |”‘31‘B’ H“‘”ff” |
Core 0 Core 7 Core 8
PUO PU 12 PU 14
PU1 PU3 PU 13 PU 15

/o
Controller

Thin nodes : /o
32 COI’eS Controller

PhD. defense | 17 july 2014 | Slide 5/43

Large nodes : 128 cores (BCS)

Cea User space allocator : malloc

B Impact of memory management mechanisms ? AppllEEE
W Focuson: - LD_PRELOAD=liballoc.so
== IMpact on allocation time :

== [Mmpact on access efficiency (placement) malloc
== Memory consumption

B Involving two components :
== Operating System (OS)
== User space memory allocator (malloc) ~<

B Malloc C interface :

float * ptr = (SIZE); mmap ~ munmap mremap
\.

ptr = (ptr,NEW_SIZE);

(ptr);

Hardware

PhD. defense | 17 july 2014 | Slide 6 /43

Cea OS virtual / physical address spaces

B Two address spaces : physical + virtual
B Description of the memory mapping in blocks of 4 KB (pages)
B Segments creation with syscalls : mmap / munmap / mremap

B Malloc has the responsibility to hide the pages to developers

Virtual memory

—— MMU /OS |-~

Physical memory (RAM)

PhD. defense | 17 july 2014 | Slide 7 / 43

Lazy page allocation

B mmap creates pure virtual segments ptr = mmap(...,SIZE,...);
#pragma omp parallel for

(i=0;1<SIZE ; i++)
ptr[i] = O;

B First touch creates a page fault for each virtual page

B OS provides physical pages on first touch

B First touch implicitly determines NUMA placement of the page

T1 T2

--- MMU/OS |-

RAM NUMA 1 RAM NUMA 2

PhD. defense | 17 july 2014 | Slide 8 /43

Huge pages

B Xx86_64 processors also support 2 MB or 1 GB pages (Huge pages)
B Address more with less pages
B TLB (Translation Lookaside Buffer) cache inside the processor MMU

B Support Linux : Transparent Huge Pages (THP)

Virtual memory

MMU/TLB/OS |-~

Physical memory

PhD. defense | 17 july 2014 | Slide 9/43

Cea Cache associativity

B Data can only be placed in one of the N lines associated to the address
B Can create conflicts depending on the OS

B Linux randomly chooses the pages

Virtual memory

L3 cache leak (8 Mo) on Nehalem
3 T

Lir|1ux ' ' '
o 28 Linux+THP —— 4\, NN
MMU/OS |- 5 | | : : :
= 26 o LA
S : : : :
E 24 e s D s .
2
Physical memory o 2.2 o S ya o |
Q' 2 o [AR N CrTTTrrr e 1
8
N o Mp————
© 16 e e R -
14 i i i i i
Huge pages 0 2 4 6 8 10 12
Buffer size (Mo)
S Cache)
Way 1 Way 2

PhD. defense | 17 july 2014 | Slide 10/43

Existing solutions

Huge pages

B Larger than cache ways

B Native supporton FreeBSD T MMU / OS

B Extended support on Linux / OpenSolaris

Page coloring

B 4K pages by taking care of associativity

MMU / OS

B Available on OpenSolaris

B Color based on virtual address (modulo)

B Regular coloring : coloration with repeated patterns

PhD. defense | 17 july 2014 | Slide 11/43

Il. Analysis of OS / allocator / caches interactions

ANALYSIS OF OS/ALLOCATOR /
CACHES INTERACTIONS

Cea OS strategies comparison

B Each system has its default paging strategy:

oS Strategy
Linux 4K random
OpenSolaris Page coloring
FreeBSD Huge pages

B |[s Linux slower due to random paging ?

B Tested architecture : Nehalem bi-socket

B Use a fixed compile chain : GCC/Binutils/MPI/BLAS

B Focus apathological case

PhD. defense | 17 july 2014 | Slide 13/43

EulerMHD issue

EulerMHD, sequential, default allocator

EulerMHD : 500
450
- C++ /MPI 5 400
= Magnéto-hydrodynamic stencil code o 350
£ 300
_ S 250
FreeBSD : slowdown of 1.5x, up to 3x in parallel £ 200
g 150
_ w 100
Impacted function only do compute. 50
0
o 100 400 800 1000
Function with 9 arrays pre-allocated at init. : Problem size
(i=0:i<SIZE ; i++) EulerMHD, sequential, custom allocator
x1[i] = x2[i] + x3[i] ... + x9Ji] 600 ‘ ! !
e BO0 |
°
2 400
Change between OS’s : E
c
= User space memory allocator (malloc). % 300
= OS paging policy g 200
- (Scheduler) W 100
0

100 400 800 1000
Problem size

Effect can be controlled by changing the allocator.

Linux FreeBSD mmmm
Linux + THP mmm OpenSolaris

PhD. defense | 17 july 2014 | Slide 14 /43

Cea Alignment effect on regular coloring

B Each malloc (OS) produces different alignments

B FreeBSD align large segments on 2 MB

B It interferes with regular patterns generated by :
== OpenSolaris coloration method (modulo)

== HUge pages

a=X*2MB b=Y*2MB c=72*2MB

))

--- MMU/OS --

Virtual memory

Physical memory /

Y Cache)

PhD. defense | 17 july 2014 | Slide 15/43

Solution

B Avoid segment alignments on cache way size (mmap / malloc).

B The Linux random approach prevents pathological cases

B Do not use regular patterns for page coloring (eg. single modulo)
B Huge pages are regular by hardware definition

a=X*2MB b=Y*2MB S‘ZZ*2MB+8KB

Virtual memory

--- MMU/OS -

Physical memory

q Cache

PhD. defense | 17 july 2014 | Slide 16 /43

[I. Allocator for HPC applications

ALLOCATOR FOR HPC APPLICATIONS

Allocator performance on HPC applications

B Main interest : malloc time cost EEEEEEEEEREEN;:H

B Testcase: Hera
== Adaptive Mesh Refinement (AMR)
== Massive C++/MPI code (~1 million lines). -t

u Large number Of memory allocations Temporal distribution of allocations
(~75 millions / 5 minutes on 12 cores)

B Large number of alloc/realloc around ~20 MB

Size (bytes)

£ + | - }
L T T T
CRU = e e A
: R
HH- A A A
1

B Available allocators :

== DOuUQg Lea / PTMalloc : libc Linux o 15 20
== Jemalloc : FreeBSD / Firefox / Facebook Execution time {(GCycles)
= TCMalloc : Google maloc

PhD. defense | 17 july 2014 | Slide 18 /43

12 cores

Execution time(s)

160 8
140 +— 7
120 - 6
100 - 5
80 - 4
60 - 3
40 - 2
20 - 1

0 - 0

6\,\00 {g\oo Q}\oo
\@6‘ \06\

mUser mSystem = Idle

Physical mem.(Go)

glibc

jemalloc tcmalloc

Execution time(s)

128 cores

Physical mem.(Go)

500 16
+549%
450 14 -
400
+ 0,
30% 1 -
350
300 10 -
250 — g -
200 +—
6 .
150 -
4 .
100 -
50 - 2 -
0 0
())) i
o ¥ »° glibc jemalloctcmalloc
& &
AN x>

m User mSystem

Idle

PhD. defense | 17 july 2014 | Slide 19/43

Cea How to measure malloc time

B Measurement method :

TO = clock_start();
ptr = malloc(SIZE);
Tl = clock_end();

B Ok for small blocks, but not for large one :

T0 = clock_start();
ptr = malloc(SIZE);
for (i =0 ; i < SIZE ; i += PAGE_SIZE)

ptr[i] = 0;
Tl = clock_end();

B Lazy page allocation.

B Page faults on first access.

Time (M cycles) 0,008 1217

PhD. defense | 17 july 2014 | Slide 20/43

Large allocations

B Costforlarge allocation : page faults.

B Commonly neglected, literature mainly discuss small allocations

B Direct call to mmap/munmap

B HPC applications (expected to) use large arrays

B Goals:
== Recycle large arrays
== Avoid fragmentation on large segments
== lake care of NUMA
== Limit locks

PhD. defense | 17 july 2014 | Slide 21 /43

Global structure

Memory source :
== Manages requests to the OS
== Exchanges per macro-blocs larger than 2 MB
== ACtS as a cache by keeping macro-blocks
== Manages balance performance / consumption
Per thread local heap :
== LOCK free
== Manages small chunks
== Split macro-blocs
— p N -
[Memory source{/ \} <> { Local heap) <> f
Global NUMA source 1
(e {\ JI > (\ Local heap \) <>
- 7 N / \\
oS | NUMAsource2 || ~ > __lecalheap App.
\ ,/'/ <> {_ Local heap) <>
Memory source : «> ! N
(User segments) \ LaEE] e /

N .4

A
Y

Allocation chain

PhD. defense | 17 july 2014 | Slide 22 /43

No fragmentation for large segments

B Reuse of large segments can induce fragmentation

B Example:

B Can be avoided by use of mremap

Too small to be| We still have the physical pages. It avoids page faults

T —
10MB 10MB M Virtual memory

--- MMU /0S|

Physical memory

PhD. defense | 17 july 2014 | Slide 23 /43

Cea Malloc NUMA issue

B Exchanges between NUMA nodes :

On NUMA 1

Allocator

On NUMA 2

Malloc()

B Most current allocators are affected by this issue

B Malloc has no information about the use of allocated segments

B Implicit binding on first touch

B User space allocator do not control physical binding of multi-page segments

PhD. defense | 17 july 2014 | PAGE 24 /43

NUMA strategy

With standard API, we can only suppose local use

Local heap guarantees NUMA isolation

No exchanges between NUMA sources

MM. sources are selected with hwloc at thread init.

Threads are not binded by default, so they move !

Create memory sources with confidence levels :
== A cOmmon one for mobile threads
== Per NUMA for binded threads
== Per NUMA for explicit requests (binded with hwloc)

Mobile threads

Local heap (::)
Unsafe
common Local heap (::)
mm. source
Local heap (::)
Binded threads
mm. source Losalesn <::>
NUMA 1 Local heap @
mm. source Losalesn <::>
NUMA 2 Local heap @

Explicit NUMA requests
sctk_alloc_on_node()

Strict NUMA 1

Strict NUMA 2

Local heap

Local heap

PhD. defense | 17 july 2014 | Slide 25/43

Remote free without locks

Macro-bloc Register

B Remote Free :
== Chunk allocated by a thread.

LIT] LT

== Freed by another thread. , 1 , 1
Local heap RFQ Local heap RFQ
B Commonly implies locks on all local heaps é é ﬂ% é E ﬁ%
B We use a dedicated atomic queue (RFQ)) a!b
purge RFQD (3)
B RFQ flush on next memory operation reg_RFQ(
malloc(0x0A342 @
B Tracking ownership with a lockfree register free()
Thread 1 Thread 2

PhD. defense | 17 july 2014 | Slide 26 /43

Cea Allocator Profiles

B Test allocator with multiple profiles

B Lowmem profile
== Return memory to the OS as soon as possible

B UMA Profile
== Recycle large segments
== Disable NUMA
== USe only one common memory source

B NUMA profile :
== Recycle large segments
== Enable NUMA structures

PhD. defense | 17 july 2014 | Slide 27 /43

Cea Hera on bi-Westmere (12 : 2 * 6 cores)

Execution time (s) Physical memory (GB)
180 8
160 7
140 =% 6
120 c
100
4
80
3
60
40 2
20 1
O T T T T T O T T T T T
A& A& & O O O -N\& -\& N7 RAY) O (@]
o8 Q Q &S U Q & K
N ¢ ¥ v & ¢
O O & %0 O &
O o)
v v

mUser = System = ldle

PhD. defense | 17 july 2014 | Slide 28 /43

Cea Hera on Nehalem-EP (128 :

Execution time (s)

4*4*8 cores)

Physical memory (GB)

800 18
700 16
14

600
12

500
10

400
8

300
.. 5

20%

200
-58% 4
100 I 2

O T T T T T O T T T
AQ AQ A O O O < AQ) RAY) O O
xé& «Os& «5& & & N &5& @s& @s& Q\Q X
o8 Q Q &S U Q & K
¥ F & > F SEER\ S
)) <& N) N) $<°
C)$ (@)
AV AV

mUser = System = ldle

PhD. defense | 17 july 2014 | Slide 29/43

IV. Optimization of Linux page fault handler

OPTIMIZING LINUX PAGE FAULT
HANDLER

Cea Benchmarking page faults

B Page faults are an issue for allocation performance

B We previously limit them with large segment recycling

B Can we improve fault performance?

B Micro-benchmark :

ptr = mmap(SIZE);
#pragma omp parallel for
(1= ; i< SIZE ; i += PAGE_SIZE)

{
}

TIME_DISTRIBUTION(ptr[i] = 0);

PhD. defense | 17 july 2014 | Slide 31/43

Time (Kcycles / 4K / Task)

512
256
128
64
32

16

Page fault scalability

Are page faults scalable ? Over threads or processes.

Mesurement on 4*4 Nehalem-EP (128 cores) and on Xeon Phi (60 cores)

Get scalability issue !

Page faults on 128 cores

Tt|1reads I —|—| l l |
| _Processes —»— . o |]
| | | | | | |
1 2 4 8 16 32 64 128 256

Time (Kcycles / 4K / Task)

Page faults on Intel Xeon Phi
4096

I I I I I 1
Threads —+— ‘ 1 1 :
Processus ——

2048 -
1024
512
256
128

128

256
Tasks

PhD. defense | 17 july 2014 | Slide 32/43

Can huge pages solve this issue ?

Standard pages: 4K

Huge pages (x86_64). 2M

Divide number of faults by 512

Impact on performance ?
== Sequential : only 40%
== Parallel : No

Why ?

Time (Kcycles / 4K/ Thread)

18

16

14

Huge page page fault time on 12 cores

Standard 4K Pagés —_—
Transparent Huge Pages / 512 —=—

5 10 15 20
Number of threads

PhD. defense | 17 july 2014 | Slide 33/43

DE LA RECHERCHE A LINDUSTRIE

What happens on first touch page fault ?

Hardware generates an interruption to the OS

Take locks on page table
Check reason of the fault

Is first touch from lazy allocation

Request a free page to NUMA free lists :I— Possible issue on Xeon Phi

Clear the page content

Map the page, update the page table

Release locks

~1400/3400 cycles 40%
} 99% for THP !

Locks, but hard to fix
(some work from
A.T. Clement ASPLOS12)

PhD. defense | 17 july 2014 | Slide 34/43

How to avoid page zeroing cost ?

B Microsoft approach :
== WWindows uses a system thread to clear the memory
== SO its done out of critical path

B But zeroing:
== IMplies useless work
== Consumes CPU cycles so energy
== CONnsumes memory bandwidth

B Allocation pattern follow:

double * ptr = malloc(SIZE * sizeof(double));
for (i =0 ; i < SIZE ; i++)

ptr[i] = default value(i);

B Why not avoid them ?

PhD. defense | 17 july 2014 | Slide 35/43

Reusing local pages to avoid zeroing

B Page zeroing is required for security reason

B |t prevents information leaks from another processes or from the kernel.
B But we can reuse pages locally !

B Need to extend the mmap semantic :

B Usable by malloc / realloc.

mmap (..MAP_ANON...) mmap (..MAP_ANON |MAP_PAGE_REUSE...)

User-space

Security

Hole

Local pool

0

Kernel Code Global free list

Kernel-space

PhD. defense | 17 july 2014 | Slide 36 /43

Performance impact

B Getthe expected improvement on 4K pages (40% for sequential).
B Also improve scalability on 1 socket
B On NUMA locking effets become dominant for scalability

B Get the constant improvement related to page zeroing.

Patched page fault time on 1 socket of 6 cores Patched page fault time on 12 NUMA cores

12 T T T T T 18 T T T T

11 L Standard kernel —— o] Standard kernel —— ; :
2 10 Patched kernel —»— | | - 161 Patched kernel —s— ~
7)) e Fre e Feee R S R SR (73]
= 9 R e B
< < 12 | | ‘ ' .
5 8 X
% 7 % 10 —
3] 6 5 8 -
3 5 &)
S X 6 .
o) o) i _
£ 3 E 4 ?

1 0 i i 1 i
0 5 10 15 20 25
Threads Threads

PhD. defense | 17 july 2014 | Slide 37 /43

Performance impact on huge pages

B Huge pages (2 MB) faults become 47 times faster, 60 in parallel.

B New interest for huge pages.

Page fault time on 2*6 cores + Patched THP

100 T |
Standard 4K pages —+—

THP /512 —+—
Patched THP / 512 ——

= 10
N
©
|_
e
<r
a 1
°
>
Q
x
[0))
£
~ 0.1

0.01

Tasks

PhD. defense | 17 july 2014 | Slide 38/43

Cea Hera results on bi-westmere (2*6 cores)

B Standard pages (4K):

Allocator Kernel Total (s) Sys. (s) Mem. (GB)
Glibc Std. 144 9 £35S
NUMA profile Std. 135 2 4,3
Lowmem profile Std. 162 16 2,0
Lowmem profile Patched 157 11 2,0
Jemalloc Std. 143 15 1,9
Jemalloc Patched 140 9 3,2

B Transparent Huge Pages (2M):

Allocator Kernel Total (s) Sys. (s) Mem. (GB)
Glibc Std. 150 13 4,5
NUMA profile Std. 138 2 6,2
Lowmem profile Std. 196 28 3,9
Lowmem profile Patched 138 3 3,8
Jemalloc Std. 145 15 2,5
Jemalloc Patched 138 6 3,2

PhD. defense | 17 july 2014 | Slide 39/43

V. Conclusion and future work

CONCLUSION AND FUTURE WORK

Cea Conclusion

Paging / alignment policies :
Avoid large alignments in malloc.
Need to avoid regular coloring.
Random paging is more robust !
Huge pages are regular by hardware definition.

Need to co-design malloc and OS paging policies.

Malloc :

Interest of large allocation recycling.
NUMA support is required on large nodes.
Speed-up of 2x on Hera 128 cores.

Page faults (OS) :

Observe a scalability issue.

40% of fault time : zeroing memory !
Proposal for a semantic extension.

New interest for huge pages : 47x !

Published articles :

[1] A Decremental Analysis Tool for Fine-Grained
Bottleneck Detection (Partool 2010)

Souad Kolial, Sébastien Valat, Tipp Moseley,
Jean-Thomas Acquaviva, William Jalby

[2] Introducing Kernel-Level Page Reuse for

High Performance Computing (MSPC 2013)
Sébastien Valat, Marc Pérache, William Jalby

PhD. defense | 17 july 2014 | Slide 41 /43

C@a Future work

Paging / coloring / alignments

Implement controlled non regular coloring

Hardware mixing inside huge pages ?

Linux huge pages: be aware of alignments (allocator / mmap)
Smaller huge page size ?

Page zeroing :
B Cleanup the patch (swap) and discuss with community
B Hardware zeroing done by RAM ?

Malloc :

B Using our memory sources and NUMA strategy inside Jemalloc ?
Mix with TCMalloc method (madvise(DONT_NEED)) ?
B Dynamic control of consumption / performance ratio

PhD. defense | 17 july 2014 | Slide 42 /43

QUESTIONS ?

Cea Ideal view of HPC memory management stack

Apply MAMA allocator approch

Jemalloc

Select arena with NUMA No 4K / 2M alignements

Memory sources

NUMA + recycling Calloc move_pages optim. Dynamic adaptation Free pages with madvise

Huge pages

Zeroing patch

Hardware

Zeroing by RAM Mixing inside huge pages Smaller huge pages (256K ?)

PhD. defense | 17 july 2014 | Slide 44 /43

BACKUPS

Solution

The Linux random approach prevents pathological cases

Do not use regular patterns for page coloring (eg. single modulo)

Huge pages are regular by hardware definition

Sequential vs. OpenMP on 2M pages
using 4 threads on 4 cores

_ 0
Malloc must take care of OS paging strategy 3 °3 ! T !
= 45
s 4 g
5 33
Malloc must avoid too large alignments S 25
g 18
. . _ S 05 ;
Existing similar cases for 4K alignments g 0 ' ' ' ' : '
. 0O 10 20 30 40 50 60 70
(eg' L1 CaCheS’ 4K ahasmg) Number of arrays per thread
Seq. (gap=512k) —— Seq. (gap=500k) ——
OMP (gap=512k) —— OMP (gap=500k) ——

PhD. defense | 17 july 2014 | Slide 46 /43

Kernel-space VS. user-space memory pools

Kernel-space advantages:

B Control the physical memory, not virtual one
B Follow the real access pattern
B NUMA support at page level, not segment

B Buffered memory can be reclaimed by kernel.

Limitations:

B More efforts to implement.

B Do not remove the interruption and locking costs

PhD. defense | 17 july 2014 | Slide 47 /43

Cea OS strategies comparison

B Each system has its default paging strategy: 0S Strategy
Linux 4K random

B Is Linux slower due to random paging ? OpenSolaris Page coloring
FreeBSD Superpages

B Tested architecture : Nehalem bi-socket

B Use a fixed compile chain : GCC/Binutils/MPI/BLAS

NAS NPB3.2-SER classe B NAS NPB3.2-MPI classe B

é 60 T T T T T T T T = 30 T T T T T L

2 3 3 3 3 OpenSolaris 2 : i OpenSolaris - mmm—

T 5o b ~ FreeBSD mmmmm _ 3 FreeBSD mmm -

= | | | | : Linux + THP m— e _ Linux+ THP s

§ 40 b] @' : : _

QEJ 30 I 71 i i i i i i i g

Q>J ! ! ! ! ! ! ! ! [b]

e 20 s e - 3

o : : ‘ : ‘ : : S

E 10 podidon 7 E

8 I | - 3

5 O — S

= 3 3 3 ‘ : ‘ 3 3 3 E i i

“g _10 | | | 1 | | | | | B _50 i | | i i i

o BT CG EP FT IS LULUHPMG SP 5 CG EP FT IS LU MG
Benchmark - Benchm

PhD. defense | 17 july 2014 | Slide 48 /43

Execution time (s)

140
120
100
80
60
40
20

Impact on threads

Larger effects on shared caches with threads/processes (Nehalem)
EulerMHD : Slowdown up to 3x on FreeBSD

16 ways L3 cache implies a maximum of 4 aligned arrays per core
No limit on concurrent arrays for unaligned allocations

Sequential vs. OpenMP on 2M pages

EulerMHD, 8 MPI tasks . using 4 threads on 4 cores
]
3 %2 [BN
= 45
o 4
£ 35
) 3
5 2.5
Q 2
_°§’ 1.&13
c
8 Og | | | | | |
100 400 800 1000 = 0 10 20 30 40 50 60 70
_ Number of arrays per thread
Problem size
_ Seq. (gap=512k) —— Seq. (gap=500k) ——
Linux FreeBSD OMP (gap=512k) —— OMP (gap=500k) ——

Linux + THP m=== OpenSolaris s

PhD. defense | 17 july 2014 | Slide 49/43

Cea 4K aliasing

B Consider the simple loop : Cycles /loop

: , : 16,8
(i=1;1<SIZE ; i++)

a[i] = b[i-1]

B |If addresses verify :

a % 4Ko = b % 4Ko

B |t produces false inter-iterations conflicts between :
== Store a[(i-1)] from i-1
== [0ad b[(1) - 1] fromi

4K aligned Unaligned

B Processor thinks (fast check with 12 lower bits) addresses are equals (alias)

B Processor do not execute them in parallel (out of order)

B In malloc, direct call to mmap generate 4K alignment by default !

PhD. defense | 17 july 2014 | Slide 50/43

Default fallback to mmap

B Allocators commonly use mmap for large arrays

B Call to mmap imply alignment on page start (4K)

B It exposes them to the issue for large arrays !

B 4K aliasing was fixed on Sandy Bridge

B But 4K alignments also create issue on L1 associativity

B Allocator must avoid to force large alignments

PhD. defense | 17 july 2014 | Slide 51/43

DE LA RECHERCHE A LINDUSTRIE

Cea

Report a list of similar issue

Need to take care of large alignments on regular page coloring

Huge pages are regular by hardware definition

Malloc and OS politics interact.

Studies must consider the two.

We reported other similar issues (see the

4K aliasing, L1 and TLB associativity

manuscript) :

Impacte Nom Alignement OMF | OF Pages Condition Solutions Probabilité
Fulte demler niveau de cache - . Oul | 4kE — Utlkaten de Tensemble du dernler cache. | colog nrear | Elevé Limux,
LL lor, huge ou | Fable : Sun0S
smeache
. . . B ErEEEE - S EAaligné relativement & LLES 16bp, 4kp, nr- | Ekvé : SunOS
3 ri LLAS . 30 “ ! . ; !
OpenMP sur coloration régulite | LI O - NBS = LLASSO color, nrsplit ou | Null : Limux
- NBTH <=CPUTH chnbs
Mo IR Tohp, dkp, nrs Maoven
plit ou chnbs
o . . o Cui | 4 Ko l6bp, 4kp, nrco- | Eleve : Sunds,
? ' LLSS, L1557 yo g .
L17 LL Pagimatjon Mgulidme LLSS, L1 Mon - NBS > LLASSO . s o chivbs Full + Limus
Flom TT5E5 | - SEAaligné sur LLSS (oud L1S57) TeEp, 9k ou | Mawen
chnlbs
. y . - ~ Udlsaton daceds de type a[i] = bi-1]. S i
1.1 Conflits Load /Store 1 Ko Maom Mom f - Tableaus alignés sur 4 Ko. 16bp ouw chaoe Eleve
- NBY >TLBASSO
L . - BSAalignd sur TLBESANTEE . .
TLE, L1 Limite des FDE PFLEASIEE MNon Non | 4 Kea - BSAdistants de plus que l]i:b& 4kp ou | Faible
PDEASIZE/NES o
Ieline TLE | Limitd'asscelativied du DTLE ILESASIZE Mon | Mem | 4 Ko B5Aalignd sur TLESASIZE 16bp, 4kp ou | Moven
NBE »TLRASEOD chnbs N

PhD.

defense | 17 july 2014 |

Slide 52 / 43

Cea Small / large allocations

B Costforlarge allocation : page faults.

B Commonly neglected, literature mainly discuss small allocations

B Direct call to mmap/munmap

B HPC applications (expected to) use large arrays

B Goals:
== Recycle large arrays
== Avoid fragmentation on large segments
== lake care of NUMA
== Limit locks

PhD. defense | 17 july 2014 | Slide 53/43

Parenté des blocs

Al'appel a free, a quel tas appartient le bloc ?
Ajout d'un registre pour retrouver I'appartenance des blocs
Approche type table des pages.
Pas de verrous contrairement aux arbres.
== UNicité des adresses renvoyées par mmap.

== UN seul macro-bloc peu couvrir une entrée.
== Pas de suppression des niveaux intermédiaires.

2Mo
I En-téte de macro-bloc
Région : 4 Mo adresse 1 To I Macro-bloc 1 (3.5 Mo)
T T T T 1] |:| Macro-bloc 2 (2 Mo)
Niveau 0 : 2 Mo Adresse 256 To D Espace libre

PhD. defense | 17 july 2014 | Slide 54 /43

Cea Mysql results

Mysql sysbench avec punaisage des threads
S000 : ; ! 5 !

gllbc: o

: : : : : jemalloc ---#--
| tcmalloc ----=
2500 i SRR SR R, S, - hoard 8-
TR : : : ; ' mpealloc - -e- -

o

2000 LA i

1500 bfon - El" _

Transactions/secondes

1000 Heoememmeee Ay A S E 4

500

T '_Tl-"l"'\;"i"";- r_—_-' ‘.=_.1_-_f' 1 __ —

0 20 40 60 80 100 120 140
Threads

PhD. defense | 17 july 2014 | Slide 55/43

kernel-space VS. user-space memory pools

Kernel-space advantages:

B Control the physical memory, not virtual one
B Follow the real access pattern
B NUMA support at page level, not segment

B Buffered memory can be reclaimed by kernel.

Limitations:

B More efforts to implement.

B Do not remove the interruption and locking costs

PhD. defense | 17 july 2014 | Slide 56 /43

Occurences

60000

50000

40000

30000

20000

10000

Improvement of faults on 6 core westmere

1 thread

| stanldard I1 thréads i
reuse 1 threads

b i i

2 4 6 8 10 12 14
Times (Kcycles / 4K / Thread)

Occurences

14000

12000

10000

8000

6000

4000

2000

12 threads (hyper-threading)

2

Times, (Kaycles 4K / Thread). .,

Istandlard 1|2 thréads i

4

reuse 12 threads s

6 8 10 12 14

Occurences

14000

12000

10000

8000

6000

4000

2000

Using two sockets (NUMA)

One socket (UMA)

| standard I12 ’clflrr:u";!lclsI []
reuse 12 threads_ []

5 10 15
Time (Kcycles / 4K / Thread)

20

uccurences

4000

3500

3000

2500

2000

1500

1000

500

Two sockets (NUMA)

f

5

[|
standard 12 threads
reuse 12 threads [

10 15

20

Time (Koygleadl #S LI ReaAk de 58/ 43

| é ‘ Allocateur / Ordonanceur / Communications | :

Thread sys. Thread sys. | Thread sys. |§ Thread sys. | Thread sys. Thread Sys.

..

Coeur 4 Coeur 1 Coeur 2 Coeur 3 Coeur 4 Coeur 1

] Mémoire NUMA 1 Mémoire NUMA 2 _

Noeud 1 Noeud 2 Noeud 3

PhD. defense | 17 july 2014 | Slide 59/43

Temps (s)

Benchmark t-test1 (640)

32 {— T
. glibc —+—
16 - jemalloc - o
 tcmalloc %
8 hoard & 7
4 . mpcalloc - e
2 :
1 2 4 8 16 32 64 128
Threads

Temps (s)

128

Benchmark t-test1 (2 Mo)

025 | I | I |
1 4 8 16 32 64 128
Threads

PhD. defense | 17 july 2014 | Slide 60/43

Temps d'exécution (cycles/boucle)

Utilisation d'alignements identiques sur Core 2 Duo

ha
&n

T T T T T T
4 tableaux —— ; ; i
6 tableaux -----. ; 5 5
2 (- 8tableaux % i B ke e

: : : : 3* : :

=k
in
I

F OE ¢ = W= = = B = e = M i = P =B :
o

I I S R S S BN
100K iM 10M 100M 1G 10G

Alignement des tableaux en espace virtuel

(a)

Temps d'exécution (cycles/boucle)

0.8

Utilisation d'alignements identiques sur Core i7

0.7
0.6
0.5
0.4

I

H

¥

4 tableaux — + | * ! .|.
6 tableaux ---%--- -‘****ac.*_
8 tabl&agx e

0.1

H

100K 1M i0M 100M 1G 10G
Alignement des tableaux en espace virtuel

(b)

PhD. defense | 17 july 2014 | Slide 61 /43

Associativité et coloration de pages

B Les cache sont associatifs
B Les données sont placées suivant leur adresse.
B Des conflits possibles genéres par 'OS

B Coloration de page, habituellement, modulo :

Segment utilisateur

|INEENEEEEENEEEEEEEEEEEEE

Mémoire virtuelle

TLB / OS

Mémoire physique

Page
4Ko

Conflits en excés (pages)

Cycles par instruction

300

250

200

150

100

50

2.6
2.4
2.2

1.8
1.6
1.4

Conflits liés a la poltique de pagination

Random pallging — ' "
Linux paging e

Fuite sur un cache de 8Mo sur Linux

Péges standards
Grosses pages

2 4 6 8 10 12
Taille du buffer (MB)

PhD. defense | 17 july 2014 | Slide 62 /43

" w '(I]W"W'W M "lil"l W "'W l U Ww 'W HMMMMWM

A M' W m W i 'WM HH ‘W{WMWU'M"W e WHLJ

ooooooooooooooo
PhD. defense | 17 july 2014 | Slide 63 /43

